

7,8-Methylenedioxy-4*H*-2,3-benzodiazepin-4-ones as Novel AMPA Receptor Antagonists§

Angela De Sarro,^a Giovanbattista De Sarro,^b Rosaria Gitto,^c Silvana Grasso,^{c,*} Nicola Micale,^c Silvana Quartarone^c and Maria Zappalà^c

^aIstituto di Farmacologia, Facoltà di Medicina, Università di Messina, piazza XX Settembre 98100 Messina, ^bDipartimento di Medicina Sperimentale e Clinica, Università di Catanzaro, via T. Campanella 88100 Catanzaro. ^cDipartimento Farmaco-Chimico, Università di Messina, viale Annunziata 98168 Messina, Italy.

Received 17 February 1998; accepted 16 March 1998

Abstract: The synthesis and anticonvulsant activity of novel 7,8-methylenedioxy-4H-2,3-benzodiazepin-4-ones 3a-e, structurally-related to GYKI 52466 1, a well-known noncompetitive AMPA-receptor antagonist, are reported. The new compounds possess marked anticonvulsant properties and, in analogy to 1, antagonize seizures induced by AMPA. In addition, when compared to the model compound 1, compounds 3 show a longer-lasting anticonvulsant activity and a lower toxicity. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: 7,8-Methylenedioxy-4H-2,3-benzodiazepin-4-ones, Anticonvulsant activity; AMPA-receptor antagonists,

There is a growing interest focused on agents acting selectively on AMPA receptors because of their relevance in the treatment of epilepsy¹⁻³ and cerebral ischemia.^{4,5}

7,8-Methylenedioxy-5*H*-2,3-benzodiazepine GYKI 52466 (1, Figure 1) has been identified as a potent and selective noncompetitive AMPA-receptor antagonist that appears to act *via* a novel

Figure 1

MeO

NH2

1 (GYKI 52466)

2a-c

a, R¹=R²=H
b, R¹=H, R²=NH₂
c, R¹=NH₂, R²=H
d, R¹=OH, R²=H
e, R¹=MeO, R²H

0960-894X/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. *PII:* \$0960-894X(98)00148-6

[§] A preliminary account of this work was presented at the First Italian-Swiss Meeting on Medicinal Chemistry, Torino, September 23-26, 1997, Abstract A51 p.105.

^{*}FAX number: +30 90 355613

allosteric site on the receptor complex.^{6,7} It shows anticonvulsant properties⁸⁻¹¹ and behaves as a neuroprotective agent in focal and global ischemia.^{12,13}

We have recently reported the synthesis of a series of 7,8-dimethoxy-4*H*-2,3-benzodiazepin-4-ones (2, Figure 1). ^{14,15} Some of these compounds proved to be more potent than 1 as anticonvulsants in various seizure models. Furthermore, when compared to the reference compound 1, they showed a longer-lasting activity and a lower toxicity. Electrophysiological assays suggest that compounds 2 act at the AMPA receptor complex *via* a noncompetitive blocking mechanism. ¹⁵

If we compare structures 1 and 2, we note two structural modifications, i.e. the replacement of the dioxole nucleus with two methoxy groups on the fused aromatic ring and the introduction of a carbonyl moiety in position 4 of the heptatomic nucleus. In order to test the role of the two methoxy groups of derivatives 2 on the biological activity, we prepared and tested novel 1-aryl-3,5-dihydro-7,8-methylenedioxy-4*H*-2,3-benzodiazepin-4-ones (3a-e, Figure 1) as anticonvulsants.

Target compounds were prepared along the reaction sequence reported in Scheme 1. Ketoesters 6 were easily prepared via Friedel-Craft acylation of methyl 3,4-methylenedioxyphenylacetate 4 with the appropriate aroyl chloride 5 by using tin(IV) chloride as the catalyst. The subsequent treatment of ketoesters 6 with hydrazine gave 3 in good overall yields (34-70%). When an amino or hydroxy group is present on the phenyl ring, i.e. 3b-d, the Friedel-Craft acylation step was carried out on trifluoroacetamido- (5b-c) or acetoxy-benzoyl (5d) chlorides respectively. The subsequent treatment of ketoesters 6b-d with an excess of hydrazine gave both cyclization and complete deprotection of the amino and hydroxy functionalities to yield directly the final derivatives 3b-d. The analytical and ¹H NMR spectral data of 3a-e are in full agreement with the proposed structures.

Scheme 1

COCI

$$CO_2Me$$

 R^2
 $Sa-e$
 CO_2Me
 R^2
 R^2
 R^2
 $Sa-e$
 Sa , Sa : $R^1=R^2=H$

5a, 6a: R'=R'=H 5b, 6b: R'=H, R'=NHCOCF₃ 5c, 6c: R'=NHCOCF₃, R'=H 5d, 6d: R'=OCOMe, R'=H 5e, 6e: R'=MeO, R'H

a: SnCl₄/CH₂Cl₂, 0-5°C, 1h; room temperature, 12h; b: NH₂NH₂·H₂O, EtOH, reflux, 6-7h.

Derivatives 3a-e were tested for anticonvulsant activity against audiogenic seizures in DBA/2 mice following a previously described experimental protocol¹⁴ and the results were compared to those recently reported¹⁵ for 1 and 2a-c (Table 1).

A survey of the results brings about the following considerations: the replacement of the two methoxy groups on the benzene fused ring with a dioxole nucleus seems to have little influence on anticonvulsant activity. As a matter of fact, 7,8-methylenedioxy derivatives 3a-c display a potency comparable to that of the corresponding compounds 2a-c. The introduction of a methoxy group at C-4' drastically reduces the activity (ED₅₀ >37.2 for 3e versus ED₅₀ 12.1 for 3a). The presence of an amino group in position 3' or 4' increases the anticonvulsant activity, in agreement with our previous results. The presence of an hydroxy group in para position also increases the activity, even if less efficiently than the isostere amino group. Finally, a comparison of the structures of 3c and 1 reveals that the substitution of the azomethine group of 1 with a lactam moiety leads to a significant enhancement in activity.

Table 1.

Anticonvulsant activity of compounds 1, 2a-c and 3a-e against audiogenic seizures in DBA/2 mice and TD50 values on locomotion assessed by rotarod test.

Compound	ED ₅₀ ^b (mg/kg)	TD_{50} (mg/kg)	TI°	
	clonic phase	tonic phase	Locomotor deficit	4.2	
2a ^d	10.0 (7.71-13.1)	9.41 (7.34-12.0)	42.1 (25.9-67.9)		
3a	12.1 (9.64-15.3)	11.4 (8.44-15.4)	44.6 (23.1-85.7)	3.7	
$2b^d$	6.00 (5.25-6.84)	5.69 (4.98-6.47)	15.9 (10.5-24.0)	2.7	
3b	5.32 (2.95-9.59)	3.74 (1.81-7.74)	29.8 (15.3-57.3)	5.6	
2c ^d	4.66 (2.80-7.46)	3.92 (2.49-5.91)	17.4 (12.1-25.4)	3.8	
3c	6.44 (3.89-10.6)	3.22 (1.35-7.79)	29.3 (21.4-39.9)	4.5	
3d	15.5 (13.2-18.2)	14.7 (12.1-17.8)	44.7 (30.5-65.5)	2.9	
3e	> 37.2	> 37.2	>62.1	N.D.e	
1	10.5 (7.15-24.7)	7.41 (4.68-11.7)	22.3 (13.4-35.8)	2.1	

^aAll compounds were given ip 30 min before auditory stimulation.

^bED₅₀ values with 95% confidence limits were calculated according to the method of Litchfield and Wilcoxon. ²⁰

^cTI = Ratio between TD₅₀ and ED₅₀ (from the clonic phase of the audiogenic seizures).

^dReference 15.

N.D. = not determined.

The time course of anticonvulsant activity was also studied in order to discover new compounds with a longer time course than 1. Following ip administration of 3a at 50 µmol/kg, maximum protection was observed after 45-90 min with subsequent return to control seizure response at 180 min. In the same experimental conditions, 1 displayed the maximum protection in interval 5-15 min followed by a gradual return to control seizure response in 30-90 min.

The most active derivatives **3a-c** were also tested against MES and PTZ-induced seizures in Swiss mice. As shown in Table 2 the tonic extension and the clonic phase of the seizures induced by MES and PTZ respectively were significantly reduced at 45 min after ip administration of the tested compounds.

In order to correlate the anticonvulsant activity of novel compounds 3 with affinity for AMPA receptor, an additional test against AMPA-induced seizures in DBA/2 mice was performed (Table 2). The clonic and tonic phases of the seizures induced by icv administration of AMPA were significantly reduced at 30 min after ip administration of 3a-c analogously to what already reported for 1, 2a and 2c.

Table 2.Anticonvulsant activity of some benzodiazepines against the MES-, PTZ- and AMPA-induced seizures and against audiogenic seizures after pretreatment with aniracetam.

Compound	ED _{so} (mg/kg) MES tonic phase (Swiss mice)	ED _{so} (mg/kg) PTZ Clonic phase (Swiss mice)	ED ₅₀ (mg/kg) AMPA ^b		ED ₅₀ (mg/kg) pretreatment with aniracetam	
			clonic phase (DBA/	tonic phase 2 mice)	clonic phase (DBA/2	
2a ^d	10.6	19.1	18.5	11.9	60.2*	44.0*
	(8.01-12.5)	(15.3-23.9)	(12.8-26.6)	(7.40-19.3)	(39.8-90.8)	(31.9-60.8)
3a	12.6 (7.82-20.4)	23.1 (13.6-39.1)	20.8 (17.4-24.9)	16.8 (12.1-23.5)	N.D.º	N.D.
3b	5.70 (4.99-6.50)	11.9 (6.76-21.2)	8.62 (4.99-14.9)	7.03 (4.19-11.8)	N.D.	N.D.
2c ^f	4.92	6.99	9.93	7.73	20.2*	18.0*
	(2.26-10.4)	(3.62-13.5)	(7.17-13.7)	(5.10-9.28)	(13.7-29.7)	(13.4-24.1)
3c	9.48	21.2	11.2	8.41	18.5*	11.7*
	(6.85-13.1)	(15.7-28.6)	(8.06-15.6)	(6.08-11.6)	(13.2-25.9)	(6.76-20.3)
1	10.5	20.0	16.8	11.9	39.3*	29.3*
	(8.59-12.7)	(16.5-24.4)	(12.7-22.3)	(7.71-17.8)	(26,0-59.5)	(18.6-46.3)

^aED₅₀ values with 95% confidence limits were calculated according to the method of Litchfield and Wilcoxon. ²⁰ ^bAMPA was administered icv at the CD₉₇ for either clonus (9.7 nmol) or forelimb tonic extension (11.7 nmol) 30 min after injection of each compound.

^cSignificant differences between ED₅₀ values of group treated with aniracetam + 2,3-benzodiazepine and group treated with 2,3-benzodiazepine alone (Table 1) are denoted: *P<0.01.

dReference 14.

[°]N.D.: not detected.

Reference 15.

In the present study we also demonstrated that aniracetam, a potentiator of AMPA effect, ¹⁶ markedly antagonized the anticonvulsant effects of 3c in DBA/2 mice (Table 2) and shifted to the right the dose-response curves with a pattern of activity similar to 1 and 2c. ¹⁵

On the basis of electrophysiological experiments carried out with derivatives 1 and 2c, ¹⁵ along with the observation that the anticonvulsant properties of 3c were significantly reduced (from 2.9 to 3.6 times) by aniracetam, a positive allosteric modulator of AMPA receptors, ¹⁶ we suggest that the present compounds 3 antagonize the AMPA receptor-mediated responses *via* an allosteric blocking mechanism.

In order to rule out a possible involvement of benzodiazepine receptor, compounds **3a-e** were assessed for the ability to displace [${}^{3}H$]flumazenil from membranes of cortex, following a previously described experimental protocol. No inhibition was observed at up to a concentration of $10 \, \mu M$ (IC₅₀ > $10 \, \mu M$).

The anticonvulsant activity of the title compounds 3 was evident at doses which generally did not cause sedation and ataxia, in agreement with several studies showing that potent antagonists at the AMPA/kainate receptor have anticonvulsant effects at doses below those impairing learning and behaviour.¹⁷⁻¹⁹ It is noteworthy that the present compounds 3 cause significantly less motor impairment in the rotarod test with respect to 1 and some of them have therapeutic index (TI) values approximately twice that of 1 (Table 1).

In the light of these findings, we can conclude that two methoxy groups or a dioxole nucleus on the benzene ring play a similar role in determining anticonvulsant effectiveness of this class of 2,3-benzodiazepines, whereas the presence of a lactam functionality in the heptatomic ring instead of the azomethine moiety present in 1, appears to be a structural requirement favourable for activity.

In conclusion, the results of the present study indicate that the novel 7,8-methylenedioxy-4*H*-2,3-benzodiazepin-4-ones 3 possess a marked anticonvulsant activity. In particular, derivatives 3a-c exhibit a higher potency, a longer-lasting anticonvulsant action and a lower toxicity than compound 1. Moreover, they display anticonvulsant effects against seizures induced by AMPA in agreement with an involvement of AMPA receptors.

Further investigations on this novel class of AMPA receptor antagonists are in progress and the results will be reported in due course.

Acknowledgments.

This work has been supported by CNR, 97.02578.CT03, (Rome, Italy).

References

- 1. Desos, P., Lepagnol, J. M., Morain, P., Lestage, P., Cordi, A. A. J. Med. Chem. 1996, 39, 197-206.
- Cai, S. X.; Huang, J.-C.; Espitia, S. A.; Tran, M.; Ilyin, V. I.; Hawkinson, J. E.; Woodward, R. M.; Weber, E.; Keana, J. F. W. J. Med. Chem. 1997, 40, 3679-3686.
- 3. Lin, Z.; Kadaba, P. K. Med. Res. Rev. 1997, 17, 537-572.
- 4. Sheardown, M. G.; Nielsen, E. O.; Hansen, A. J.; Jacobsen, P.; Honore, T. Science 1990, 247, 571-574.

- Buchan, A. M.; Lesiuk, H.; Barnes, K. A.; Li, H.; Huang, Z. G.; Smith, K. E.; Xue, D. Stroke 1993, 24 suppl. I, 148-152.
- 6. Donevan, S. D.; Rogawski, M. A. Neuron 1993, 10, 51-59.
- 7. Rogawski, M. A. Trends Pharmacol. Sci. 1993, 14, 325-331.
- 8. Chapman, A. G.; Smith, S. E.; Meldrum, B. S. Epilepsy Res. 1991, 9, 92-96.
- 9. Smith, S. E.; Durmuller, N.; Meldrum, B. S. Eur. J. Pharmacol. 1991, 201, 179-183.
- 10. Chapman, A. G.; Al-Zubaidy, Z.; Meldrum, B. S. Eur. J. Pharmacol. 1993, 231, 301-303.
- 11. Donevan, S. D.; Yamaguchi, S. I.; Rogawski, M. A. J. Pharmac. Exp. Ther. 1994, 271, 25-29.
- 12. Smith, S. E.; Meldrum, B. S. Stroke 1992, 23, 861-864.
- 13. Arvin, B.; Lekieffre, D.; Graham, J. L.; Moncada, C.; Chapman, A. G.; Meldrum, B. S. J. Neurochem. 1994, 62, 1458-1467.
- De Sarro, G.; Chimirri, A.; De Sarro, A.; Gitto, R.; Grasso, S.; Giusti, P.; Chapman, A. G. Eur. J. Pharmacol. 1995, 294, 411-422.
- 15. Chimirri, A.; De Sarro, G.; De Sarro, A.; Gitto, R.; Grasso, S.; Quartarone, S.; Zappalà, M.; Giusti, P.; Libri, V.; Constanti, A.; Chapman, A. G. J. Med. Chem. 1997, 40, 1258-1269.
- 16. Ito, I.; Tanabe, S.; Kohda, A.; Sugiyama, H. J. Physiol. (London) 1990, 424, 533-543.
- 17. Chiamulera, C.; Costa S.; Reggiani, A. Psychopharmacology 1990, 102, 551-552.
- 18. Bliss, T. V. P.; Collingridge G. L. Nature 1993, 361, 31-39.
- 19. Paternain A. V.; Morales, M.; Lerma, J. Neuron 1995, 14, 185-189.
- 20. Litchfield, J. T.; Wilcoxon, F.. J. Pharmac. Exp. Ther. 1949, 96, 99-113.